IDENTITAS TRIGONOMETRI

 Nama:adinda syarifah x mipa3(01) 



Rumus Identitas Trigonometri

A. PENGERTIAN

Identitas trigonometri adalah suatu relasi atau kalimat terbuka yang memuat fungsi-fungsi trigonometri dan yang bernilai benar untuk setiap penggantian variabel dengan konstanta anggota domain fungsinya. Domainnya sering tidak dinyatakan secara eksplisit. Jika demikian maka umumnya yang dimaksud adalah himpunan bilangan real. Namun dalam trigonometri identitas yang memuat fungsi tangens, kotangens, sekans dan kosekans domain himpunan bilangan real ini sering menimbulkan masalah ketakhinggaan. Karena itu maka dalam hal tersebut, meskipun tidak dinyatakan secara eksplisit, maka syarat terjadinya fungsi tersebut merupakan starat yang perlu diperhitungkan.



Kebenaran suatu relasi atau suatu kalimat terbuka sebagai suatu identitas perlu diverifikasi atau dibuktikan berdasar aturan atau rumus dasar yang mendahuluinya.


B. MEMBUKTIKAN KEBENARAN IDENTITAS

Ada tiga pilihan pembuktian identitas, yaitu: Menggunakan rumus-rumus atau identitas-identitas yang telah dibuktikan kebenarannya.

(i) ruas kiri diubah bentuknya sehingga menjadi tepat sama dengan ruas kanan

(iii) Ruas kiri diubah bentuknya menjadi suatu bentuk mlain, ruas kanan diubah menjadi bentuk lain, sehingga kedua bentuk akhir itu sama.


Dua yang pertama merupakan pilihan utama. Secara umum, yang diubah adalah biasanya adalah bentuk yang paling kompleks dibuktikan sama dengan bentuk yang lebih sederhana.


Keberhasilan pembuktian kebenaran suatu identitas memerlukan:

(i) telah dikuasainya relasi, aturan atau rumus-rumus dasar trigonometri dan aljabar.

(ii) Telah dikuasainya proses pemfaktoran, penyederhanaan, operasi pada bentuk pecahan dan operasi hitung lainnya serta operasi dasar aljabar.

(iii) Pelatihan yang cukup.

Dalam proses pembuktian, selain yang disebutkan pada dua butir pertama di atas, yang sangat penting diperhatikan ialah bahwa (1) perubahan-perubahan bentuk yang dilakukan berorientasi pada tujuan (ruas lain yang dituju). Maksudnya, bentuk-bentuk yang dituju biasanya adalah bentuk atau derajat yang lebih sederhana dan dapat dikondisikan atau “dipaksakan” adanya, dengan penyesuaian bentuk-bentuk lainnya dan (2) selain menggunakan hubungan antara sekans dan tangens, kosekans dan kotangens, fungsi-fungsi tangens, kotangens, sekans, dan kosekans juga dapat diubah ke fungsi sinus dan atau kosinus.


C. RUMUS-RUMUS TRIGONOMETRI

I. RELASI/RUMUS DASAR FUNGSI TRIGONOMETRI

1. RELASI KEBALIKAN RELASI PEMBAGIAN RELASI “PYTHAGORAS”

2. FUNGSI TRIGONOMETRI SUDUT-SUDUT YANG BERELASI                      Sec(90 – a) = csc a              csc(90 – a) = sec a

sin(180 – a)o = sin ao                            sin(180 + a)o = -sin 

cos(180 – a)o = -cos ao                         cos(180 + a)o = -cos 

tan(180 – a)o = -tan ao                         tan(180 – a)o = tan 

sin(360 – a)o = -sin ao                          sin(-ao) = -sin 

cos(360 – a)o = cos ao                          cos(-ao) = cos 

tan(360 – a)o = -tan ao                         tan(-ao) = -tan 


II. RUMUS FUNGSI TRIGONOMETRI DUA SUD

1. RUMUS JUMLAH  DAN RUMUS SELIS

sin(a + b) = sin a cos b + cos a sin 

sin(a – b) = sin a cos b – cos a sin 

cos(a + b) = cos a cos b – sin a sin 

cos(a – b) = cos a cos b + sin a sin 

2. RUMUS SUDUT RANGK

sin 2a = 2 sin a cos 

cos 2a = cos2a – sin2

            = 1 – 2 sin2a       

            = 2 cos2a – 


III. RUMUS JUMLAH, SELISIH, DAN HASIL KALI FUNGSI SINUS/KOSIN

1. HASIL KALI SINUS DAN KOSINUS             2. JUMLAH DAN SELIEIH SUD

sin a cos b = 1/2(sin(a + b) + sin(a – b))               sin A + sin B = 2 sin 1/2(A + B) cos 1/2(A + B

cos a sin b = 1/2(sin(a – b) – sin(a – b))                sin A – sin B = 2 cos1/2(A – B) sin1/2 (A – B

cos a cos b = 1/2(cos(a – b) – cos(a – b))             cos A + cos B = 2 cos 1/2(A + B) cos 1/2(A – B

sin a sin b = -1/2(cos(a – b) – sin(a – b))              cos A – cos B = -2 sin 1/2(A – B) sin 1/2(A – B

Kesulitan dalam “menghafal rumus” disebabkan semuanya hendak dihafalkan satu persatu. Untuk memahami hal-hal “serupa tapi tak sama” yang penting adalah mencari bentuk umum dan perbedaannya))))UTUS1 abAPbbbbIHUTaoaoaoaoaoao


Kofungsi: sin(90 – a) = cos a cos(90 – a) = sin a

                          Tan(90 – a) = cot a cot(90 – a) = tan a


CONTOH SOAL IDENTITAS TRIGONOMETRI:

1. SOAL-SOAL BERDASAR RELASI/RUMUS DASAR FUNGSI TRIGONOMETRI

Contoh 1:

(Pembuktian dilakukan dengan mengubah bentuk ruas kanan untuk disederhanakan ke bentuk ruas kiri. Pilihan ini menuju ruas kiri ini terutama karena bentuk ruas kiri lebih sederhana).

Buktikanlah bahwa sec4q – sec2q = tan4q + tan2q

Bukti:

Alternatif I Dari ruas kiri Alternatif II Dari ruas kanan

Ruas kiri: Ruas kanan:

sec4q – sec2q tan4q + tan2q

= sec2q(sec2q – 1) = tan2q(tan2q – 1)

= sec2q x tan2q = (sec2q – 1) sec2q

= (1 + tan2q) x tan2q = = sec4q – sec2q

= tan2q + tan4q = ruas kiri (terbukti)

= tan4q – tan2q

= ruas kanan (terbukti)



Komentar

Postingan populer dari blog ini

UKURAN SUDUT DERAJAT DAN RADIAN

Soal konteks tual berkaitan perbandingan trigonometri pada segi tiga siku siku, sudut elevasi dan sudut depresi